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FOREWORD

As part of the on-going research program in "Decision Control

Models in Operations Research," Mr. J. Christopher Mitchell examines

the problem of minimizing costs in a multi-item system by an appro-

priate choice of single-item service objectives. Mr. Mitchell inves-

tigates the properties of optimal policies and, in the special case

of exponentially distributed demand, develops an efficient algorithm

for computing optimal policies. He shows that this approach can

lead to significant savings over the uniform service approach that

is often used in applied settings.

This report is somewhat of a departure from earlier reports in

that it is the first to consider a system of interdependent items.

Other related reports dealing with the research program are listed

on the following pages.

Harvey M. Wagner
Principal Investigator

Richard Ehrhardt
Co-Principal Investigator



MacCormick, A. (1974), Statistical Problems in Inventory Control,
ONR and ARO Technical Report 2, December 1974, School of
Organization and Management, Yale University, 244 pp.

Estey, A. S. and R. L. Kaufman (1975), fulti-Item Inventory System
Policies Using Statistical Estimates: Negative Binomial De-
mands (Variance/Mean - 9), ONR and ARO Technical Report 3,
September 1975, School of Organization and Management, Yale
University, 85 pp.

Ehrhardt, R. (1975), Variance Reduction Techniques for an Inventory
Simulation, ONR and ARO Technical Report 4, September 1975,
School, of Organization and Management, Yale University, 24 pp.

Kaufman, R. (1976), Computer Programs for (s,S) Policies Under In-
dependent or Filtered Demands, ONR and ARO Technical Report 5,
School of Organization and Management, Yale University, 65 pp.

Kaufman, R. and J. Klincewicz (1976), flulti-Item Inventory System
Policies Using Statistical Estimates: Sporadic Demands
(Variance/.lean = 9), ONR and ARO Technical Report 6, School
of Organization and Management, Yale University, 58 pp.

Ehrhardt, R. (1976), The Power Approximation: Inventory Policies
Based on Limited Demand Information, ONR and ARO Technical
Report 7, June 1976, School of Organization and Management,
Yale University, 106 pp.

Klincewicz, J. G. (1976), Biased Variance Estimators for Statistical
Inventory Policies, ONR and ARO Technical Report 8, August 1976,
School of Organi tion and Management, Yale University, 24 pp.

Klincewicz, J. G. (1976), Inventory Control Using Statistical Esti-
mates: The Power Approximation and Sporadic Demands (Variance/
~ean = 9, ONR and ARO Technical Report 9, November 1976,
Schooi of Organization and Management, Yale University, 52 pp.

Klincewicz, J. R. (1976), The Power A proximation: Control of Multi-
Item Inventory Systems -with Constant Standard-Deviation-To-tMean
Ratio for Demand, ONR and ARO Technical Report 10, November
1976, School of Business Administration and Curriculum in
Operations Research and Systems Analysis, University of North
Carolina at Chapel Hill, 47 pp.

Kaufman, R. L. (1977), (s,S) Inventory Policies in a Nonstationary
Demandnd AR Technia1 Repo-tT, April
10l, School of Business Administration and Curriculum in
Operations Research and Systems Analysis, University of North
Carolina at Chapel Hill, 15S pp.



Ehrhardt, R. (1977), Operating Characteristic Approximations for
the Analysis of (s,S) Inventory Sstems, OHR and ARO Technical
Report 12, April 1977, School of Business Administration and
Curriculum in Operations Research and Systems Analysis, Uni-
versity of North Carolina at Chapel Hill, 109 pp.

Schultz, C. R., R. Ehrhardt, and A. MacCormick (1977), Forecasting
Operating Characteristics of (s,S) Inventory Systems, NR and
ARO Technical Report 13, December 1977, School of Business Ad-
ministration and Curriculum in Operations Research and Systems
Analysis, University of North Carolina at Chapel Hill, 47 pp.

Schultz, C. R. (1979), (s,S) Inventory Policies for a Wholesale
Warehouse Inventory System, ONR Technical Report 14, April
1979, School of Business Administration and Curriculum in Op-
erations Research and Systems Analysis, University of North
Carolina at Chapel Hill, 75 pp.

Schultz, C. R. (1980), Wholesale Warehouse Inventory Control with
Statistical Demand Information, ONR Technical Report 15,
December 1980, School of Business Administration and Curricu-
lun in Operations Research and Systems Analysis, University
of North Carolina at Chapel Hill, 74 pp.

Ehrhardt, R. and G. Kastner (1980), An Empirical Comparison of Two
Approximately Optimal (s,S) Inventory Policies, Technical Re-
port 16, December 1980, School of Business Administration and
Curriculum in Operations Research and Systems Analysis, Uni-
versity of North Carolina at Chapel Hill, 22 pp.

Ehrhardt, R. (1980), (s,S) Policies for a Dynamic Inventory 1odel
with Stochastic Lead Times, Technical Report 17, December 1980,
School of Business Administration and Curriculum in Operations
Research and Systems Analysis, University of North Carolina at
Chapel Hill, 20 pp.

Mosier, C. (1981), Revised (s,S) Power Approximation, Technical
Report 18, February 1981, School of Business Administration,
University of North Carolina at Chapel Hill, 18 pp.

Blazer, D. and M. McClelland (1981), An Inventory Model for Special
Handling of Extreme Value Demands, Technical Report 19, December
1981, School of Business Administration, University of North
Carolina at Chapel Hill, 10 pp.



CHOOSING SINGLE-ITEM SERVICE OBJECTIVES IN

A MULTI-ITEM BASE-STOCK INVENTORY SYSTEM

J. Christopher Mitchell*

- Abstract -

This paper considers a multi-item, multi-period base-stock inven-

tory system. The model differs from standard treatments in that shortage

costs are replaced by stockout probability constraints to be satisfied

in each period. The value of such a model is that it is often easier

to express service objectives in terms of stockout probability con-

straints than it is to specify shortage costs. Specifically, system

service is defined in terms of a weighted average of single-item stock-

out probabilities. An optimal policy minimizes system costs while

satisfying a constraint on system service. Necessary and sufficient

conditions for a policy to be optimal are derived for the base-stock

system, and a computationally efficient algorithm to find such a policy

is developed for the special case of exponential demands and zero lead-

times. It is also shown by means of an example that operating costs

can be reduced significantly when this model is used rather than the

simpler uniform service model often used by managers.
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1. INTRODUCTION

We consider a simple multi-item inventory system and study the

problem of specifying system-wide service objectives. Most theoret-

ical models considered in the literature assume that holding or

shortage costs are applied to any excess inventory or unsatisfied

demand, respectively. A major difficulty in applying such models

in practice is in the specification of shortage costs. Frequently,

the manager will set shortage cost parameters based on an objective

of satisfying demand with at least some minimum probability. Such

an approach is often preferred because subjective factors can more

easily be expressed as a probability of satisfying demand than as

a cost for each shortage incurred.

A significant shortcoming of this approach is that it usually

entails the setting of one system-wide probability of demand satis-

faction that is then applied uniformly to all items in the system.

In this paper we raise the issue of specifying different service

objectives for individual items while still satisfying some given

system-wide objective. The value of this approach is that system

costs can be reduced below those of a method that requires identi-

cal service for all items.

Specifically, we consider a base-stock inventory model, a multi-

item, multi-period inventory problem with stochastic demands, fixed

leadtimes, and stationary ordering, holding, and shortage costs.

For each item i there is an ordering cost ci per unit ordered,

incurred upon delivery Li z 0 periods after order placement.

There is also a holding cost hi per unit of inventory on hand,

incurred at the end of each period. The demand realized for item
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i in period n is Din' with absolutely continuous cdf 4i and

density Oi. We assume that Din 0 with probability 1, and

Oi(0) = 0. The mean of 4,i is Pi, and all demands Din are

mutually independent. The initial inventory level for item i is

ui, and the single period discount factor is B, where 0 < B 1.

There are N items and T (possibly infinite) periods in which

decisions must be made. When T is finite, there are also final

salvage periods T + Li + I for i = 1,..., N.

A solution to the single-product version of this problem is

given by Veinott [2, pp. 754-757] when a unit shortage cost pi,

incurred at the end of each period, is specified for each item i.

Let 1i denote the (Li+l)-fold convolution of ,i with itself.

There is a myopic optimal policy x = (xI,,... XN) given by

* p. - (l-B)ci
Pi(xi) = Pi + h 2, where x i  is the base-stock level for item

i in all periods. Thus the policy requires that whenever the in-

ventory position (stock on hand plus stock on order) for item i

falls below xi, an order is placed to increase it up to xi. The

probability of meeting the demand for any period for item i is

Pi (l-B)ci
thus Pi + hi Typically, a manager wishes to meet all demands

in all periods with a probability of at least a, for some pre-

scribed 0 < a < 1, and hence sets each shortage cost pi such

that = - (1-0h .
pi + h i

This paper will discuss an alternative base-stock inventory

model, one without shortage costs. Instead of these costs, we

require that some specified set of service-level constraints be
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satisfied in each period. Except for the most simple constraints,

it is considerably more difficult to find an optimal policy when

service-level constraints, rather than shortage costs, are used.

We formulate this model as a constrained nonlinear program

(NLP). We discuss two types of service-level constraints. The

first is the one frequently used by managers, namely, requiring

that all demands in all periods be met with a probability of at

least ci. The second is more general than the first. It requires

that all demands for item i in all periods be met with a proba-

bility of at least ci, for i = l,...,N, where the ai are not

necessarily all the same. We also require a system-wide constraint

on the ai in each period. Each item is controlled by a base-stock

policy that assures demand satisfaction with probability ci for

item i. Moreover, a solution x = (xI, ... 9xN) of this constrained

NLP is equivalent to specifying shortage costs pi for each item

Pi - (l-B)c.
i so that Pi + 1i = ai. Although we assume that the demand

distributions are absolutely continuous, we note that if the demand

distributions are discrete a deterministic policy may not be opti-

mal [2, p. 757]. Nonetheless, we would recommend that research be

focused on deterministic base-stock policies, since these are more

appropriate in practice.

For our constrained NLP we derive equations representing first-

order necessary and second-order sufficient conditions, the solution

to which is an optimal policy. However, it is not clear how to

solve these equations efficiently for a general demand distribution.
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For exponential demand distributions we derive a conputationally

efficient algorithm to solve these equations. We then consider an

example in which we compare the total system costs when eachof the

two types of service-level constraints is used. We show that there

are inventory systems of practical interest for which there is a

substantial cost savings when using the general constraint rather

than the simpler one often used by managers.

2. THE GENERAL INVENTORY MODEL

Recall that for our alternative base-stock model we have for

each item i = 1,...,N and each period n = 1,...,T+L i, the fol-

lowing: ordering cost ci , holding cost hi , fixed leadtime

Li e 0, demands Din with continuous cdf i'. density 0i and

mean pi, initial inventory ui , and a single-period discount fac-

tor 6 with 0 < B s 1. Each item i is controlled by a'myopic

base-stock policy xi, and x = (xI,... ,XN). We seek to minimize

the total expected discounted cost over the entire horizon subject to

a system-wide service constraint being satisfied in every period.

Let Cni (x) be the expected discounted cost for item i in

period n + Li. If the leadtime is greater than 0, costs in

periods 1,... L will be independent of xi. Now for n = l.....T

and i = 1,...,N,

.) n+LiI

Cni (xi) = 8 LiE(Yn+Li,i ) + ciE(Rni),

where Ymi is the inventory on hand for item i at the end of

period m, and Rni is the order size for item i placed in

period n (and hence received and paid for in period n + L.).1
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Since xi is inventory on hand plus on order in each period,

Y +L iw(x n+L" Dijy+Yn+L1i = '1n 1
I

J=n

where (y)+ = max{O,y}. And since the policy is a base-stock

policy,

xi  - u i n = l

Rin = I:n 1D in n =2,...,T

Note that the value of Ril implies that if the initial inventory

ui exceeds the base-stock level xi , the excess is salvaged at the

unit ordering cost ci

Recall that €i is the (Li+l)-fold convolution of 4i with

itself. Let €i be its density. Then since the Dij are iid

with cdf Di for j = n,... ,n+Li , we have

E(Yn+Li i) E i Dj
J=n

= (xi-t)dl (t)

0

Since i (0) = 0 for all i, integration by parts yields

x.

E(Yn+L i) = S(t)dt for i = 1,...,N
0 n = 1,...,T . (2)

We also have



w i  -u i -=

6

E(Rni (3)
ji n = 2,.. T

We assume a salvage operation for item i in period

T + Li + 1, where any excess stock is sold at its unit ordering

cost, and any unfilled demand is satisfied immediately. Hence,

the salvage cost is given by

-a 'cixi - n=T Di)

which has expected value

CT+l,i(xi) = 'c i[xi  - (Li+l)lii]

Our introduction of salvage cost follows the development in [2],

where it is on artifice to guarantee a myopic optimal policy.

Wher the horizon T is long, the salvage terms are an acceptable

approximation. For the infinite horizon case, which is considered

at the end of Section 3, the artifice evidently vanishes.

T+l N

Let C(x) = T N i(x.), the total discounted expected
n=l ilIi 1

cost excluding the policy-independent costs incurred in periods

1,... L, where L = min{Li:i = 1,...,Nl. Also let

N L i x

H(x) = 2 B h 4t(t)dt
i =1

and
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N Li

h(x) e cxi X

Then (1), (2), (3), and (4) imply thatX
T N n+Li-l

n(x) E E a h 4 (t)dt
n=l i=l 0

n L i T n+L.- 1

+ ici(xi-u i ) + E n L  cill

+ + n=2

N T+L.
N T+Lci [xi - (Li+l)vi]

After some algebraic simplifications, for B < I we can write

C(x) = C(x) + N Li i +
i~l i=l

N L.

- a ciu i  (5)

where C(x) = PH H(x) + (l-O)h(x)] (6)

Note that C(x) - C(x) are policy-independent costs.

In summary, we have that the total expected discounted cost

excluding all policy-independent costs is

C(x) = - H(x) + c(x)) , (7a)
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N L x i *

where H(x) =h 0(t)dt (7b)

0

N L

and c(x) = (l-a)h(x) = (1-)(0 ici)x i  (7c)
i=l

We are interested in minimizing C(x) subject to a service

constraint on the probability of satisfying demand. We consider

two types of service constraints. The first type requires that

the demand for every item in every period be satisfied with a prob-

ability of at least a, where 0 < a < 1. We call this service

requirement Independent and Identical Service (IIS). Thus, there

will be N service constraints

¢i(xf)kc for i =1,... ,N (8)

which must be satisfied in every period. 1IS is an approach fre-

quently used in practice. Indeed, if we make the reasonable as-

sumption that for some myopic optimal policy x = (x, ... xN )

these constraints are tight, finding such a policy is equivalent

to specifying the shortage costs pi in Veinott's model [2) des-

cribed in the Introduction by

Pi - (-8)ci

Pi + hi a, for i = l,...,N.

The second type of service constraint is a generalization of

IIS and is called General Service (GS). For this service the sys-

tem of N constraints on the probability of satisfying demand is

r . . . . .



9

replaced by a single constraint requiring that a weighted average

of the probabilities be at least L. The value of this approach

is that varying service levels can be applied to the items se as

to reap the greatest benefits in system-wide costs. We use the

constraint

N

kX k[II4 (x) - t (9)

where kl,...,kN > 0 are specified weights. In the following

sections we often set ki 
= "i.

We will require that constraint (9) be satisfied in every

period. This does not destroy the myopic character of the optimal

solution.

We minimize the cost function given by (7a), (7b), and (7c)

subject to the constraint (9). In summary, we have formulated the

following optimization problem:

minimize C(x) [(x) + c(x)]

N

subject to g(x) = X ki[4(x i) - ct] 2 0i=l

N x . (10)

where H(x) = i $ihi 4i(t)dt
i=l

0

NNE L.
and c(x) = (I-8)S 'Clx ii=l *
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We mention again that a myopic optimal policy x = (xl,...,xN)

found to be the solution of this NLP is equivalent to specifying

Pi - (l'B)c i
shortage costs Pi as Pi + hi "=1(xi) in Veinott's model

[2] discussed in the Introduction. Also, the probability ai

that the demand for item i be met in any period is

Pi- (l-)cii - Pi + h i

3. ANALYSIS

3.1 First- and Second-Order 0ptimality Conditions

We use NLP techniques to analyze (10). Specifically, we de-

rive first-order necessary and second-order sufficient conditions

for x to be a solution of (10). We also investigate when this

local optimum can be known to be a global optimum.

It is clear that if (10) has a solution x, it has one with

g(x) = 0, and so we assume that g(x) = 0 at optimality. Since

there is only one constraint g(x) - 0, and g is differentiable

everywhere on (0,+-o), a first-order necessary condition for x

to solve (10) is that there exist A a 0 such that

VC(x) - Xvg(x) = 0 ,
(11)

where g(x) = 0 ,

as proved in [1, p. 41]. Now

. C(x) = ai (xi) + (1-6)6 ci



and

9(x) kjo.(x.)

Hence (11) is equivalent to

* 6 1[h ip(xi) + (I-O)c.)

k isi(xi)

being independent of i for all i = 1,.. .,N.

Suppose that at optimality 4,. and 4.can be written in the

following form for i = ,. N:

11 x )=V t some 0 <v i < I/ct * 12

a 1 [ivc (1-B)c 1] 12

Oi( )= A *k some X > 0

Since X* is independent of i, (12) together with 9(x) 0,

which is

N

L kiv. - 1) 0

satisfy the necessary condition (11). We summnarize these results in

the following theorem.

Theorem 1: A first-order necessary condition for x to solve

(10) is that there exist v,,... V,, with 0 K vi < I/ca, and

X* > 0, such that for i = 1,... ,Nt
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(a) i(xi) =vi

S L vi + (l-M)ci.
(b) i (xi X*k

N

(c) i ki[vi-1] = 0

Given that the first-order condition (11) holds, we proceed to

derive a second-order sufficient condition that x solve (10). As

proved in [1, p. 48], a second-order condition is the following:

For all Z E N with z 0,

zT[v 2C(x) - XV2g(x)]z > 0 , (14)

where A > 0 is the same parameter as given in (11).

Now

T h 101 (x1 ) 0

V2 C(x) - (I-BT) 0 (15)
0- a LNhNO(xN)j

and

VkgIx(xI ) (
V g(x) = -,(16)

0kNO 
N (x N ) _
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and so (14) is equivalent to

N [L
B hi~i(xi) -*ki (x 2 > 0z ,

because X = -6-8 *.

Since it is sufficient that each term in the summand be

positive, we have established the following theorem:

Theorem 2. Given that (11) holds for x, a second-order

sufficient condition for x to solve (10) is that for i = l,....N,

d * Li hi *jx .@(x i <  X~k i i(x i) (17)

Note that (17) is trivially satisfied if is positive and

nonincreasing at xi.

3.2 Undiscounted and Infinite Horizon Models

We briefly consider what changes are necessary to model the

systems that are undiscounted and/or have an infinite planning

horizon. It turns out that although the formulation (10) must be

modified somewhat, the first- and second-order conditions (13) and

(17) remain intact.

The undiscounted finite horizon model is obtained by setting

B = 1. The only change necessary in the formulation occurs with

respect to (7a), where it is assumed B < 1. However, when 8 = 1,

(7a) becomes

C(x) = T[H(x) + c(x)]
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Moreover, when 8 = 1, (7b) and (7c) become

N xi

H(x) h 'Pi h1  (t)
0

and c(x) = 0, respectively.

Therefore the undiscounted finite horizon model analogous to

(10) is

minimize C(x) = TH(x)

N

subject to g(x) = E ki[i(xi ) - ] 0 , (18)i1l

N X

where H(x) = hi  i(t)dt

0

It is straightforward to verify that the first-order necessary

and second-order sufficient conditions for optimality are. still

(13) and (17), respectively, with 0 = I inserted in those formulas.

The undiscounted infinite horizon model is obtained by setting

I = and T = + . It is clear from (18) that the total expected

undiscounted cost is infinite, and so we must use an alternative

optimality criterion. We seek to minimize the average expected cost

per period. Thus this is the previous model (18) with T = 1, and

so the optimality conditions (13) and (17) hold with 6 = 1 and

T = 1 (not T = +-) inserted in those formulas.

The discounted infinite horizon model is obtained by setting

T = +- (and B < 1). In the formulation of the model (10) the



15

only dependence on T is found in the objective function, which

becomes

C(x) + c(x)]

when T = + . In order to guarantee that the total expected dis-

counted cost is finite, we must verify that the policy-independent

terms in (5) are finite for T = +=. The only dependence on T

are the terms

6-6 T  BT
and B

and for a < l,

lim a- T T _ < +- and lim aT 0
T- I - T

Thus the total expected discounted cost is finite, and the analog

to the model (10) for the discounted infinite horizon model is

minimize C(x) = H(x) + c(x)

N

subject to g(x) = m ki[o(xi) " 0 ,

N L

and c(x) = ( I-B) i x
i'l
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Again, the first- and second-order optimality conditions (13)

and (17) remain unchanged, as is easily shown.

3.3 Global Optima

We now seek to establish conditions that guarantee that a

local optimum to (10) is in fact a global optimum. In general, a

local optimum need not be a global optimum. However, if (10) is a

convex NLP, i.e., if on their respective domains C(x) is a convex

function and g(x) is a concave function, then any local optimum

is also a global optimum, as proved in [1, p. 96]. Now (15) implies

that C(x) is always convex since v 2C(x) is always positive def-

inite. However, (16) implies that g(x) is concave if and only if

€i is nonincreasing at xi for all i = 1,...,N (since this is

equivalent to 2g(x) being negative semi-definite at x). Recall

that this is almost the same condition that guaranteed that the

second-order sufficient condition'(17) be satisfied.

In our examples, we consider the exponential and uniform dis-

tributions. Since their density functions are always nonincreasing

on their supports, it will be sufficient to search for local optima

using (13) and (17), for they will also be global optima.

4. EXPONENTIAL DEMAND

We consider the special case where Li = 0 for i = 1,...,N,

and all demands are exponentially distributed. Using the first-

and second-order conditions we derive a computationally efficient

algorithm to compute an optimal base-stock policy x.
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Since the exponential density is positive and decreasing on

its support, the sufficient condition (17) is trivially satisfied

for all x .! 0. Thus we need only search for x 0 which satis-

fies the necessary condition (13). Because Li 0.

0 x 0

4 (x) =*(X) =I

and

d =x ix) (- iX 0~

So when x 0, (a) and (b) of (13) are equivalent to

V X*ki~7 - ~~-'C (20)

This, together with (c) of (13), is equivalent to

N i[ *k - vli'
1k' X*k +4 (1

Now ti.x.) Vic% if and only if

= - log (1 - Vc) ,O (22)

and so if we can solve (21) for X* > 0, (20) gives us v.i and

(2?) gives us x.. We have the following theorem:
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Theorem 2: There is a unique A* > 0 that solves (21).

Proof: Let

N C k[i - (1"B)c 11
i( l'k aXki + ihi)

Then f(O) < 0 and f(+-) > 0. Since f is continuous on

(0,+-), the Intermediate Value Theorem implies that there exists

X* c (0,+-) such that f(X*) = 0. It is straightforward to verify

that f'(X) > 0 on (0,+-), and so Rolle's Theorem implies that

\* is unique.

Thus we have the following algorithm to compute x when

Li  0 and the demands are exponentially distributed with means

N rki - ui(l_B)c i
(1) Solve ki[ (Ak + h) 11 0i=l L i ihi

for X* > 0

(23)
X*ki - i(l-6)ci

(2) Set vi 
= .- (Aki + uihi for i = 1,...,N.

(3) Set xi = -Ii log (I- via) for i = 1,... ,N.

Step (1) can be done, for example, using a bisection method.

Even for very large N, this is not computationally very difficult.

Recall that in the Introduction we discussed two possible

service constraints we might impose on the inventory system. The

first, which we call Independent and Identical Service (IIS),
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requires that we use the N constraints given in (8) for each

period. The second service constraint, which we call General

Service (GS), requires that we use the single constraint (9) in

each period.

If we use the IIS constraint, the fact that the constraints

are tight at optimality implies that the optimal value for x can

be found by solving the system of equations

)i(xi) = a, i = 1,...,N ,

for x = (xl,... ,XN). Hence, the optimal base-stock policy is given

by

= - log(l-) (24)

If we use the GS constraint, the optimal base-stock policy x

must be found using the algorithm given in (23). Hence, the impact

of imposing the GS constraint as opposed to the IIS constraint is

to replace i log(l-) in (24) with i log(l-vi), where vi

is algorithmically computed.

It is clear that the GS constraint is less restrictive than

the IIS constraint, and hence, the optimal objective value of (7a)

subject to the GS constraint is no larger than that subject to the

IIS constraint. However, it is a good deal more work to find the

base-stock policy in the GS case than in the IIS case. One may

wonder for what system parameters, if any, the extra work and ex-

pense involved in using (23) is justified. In other words, when,

if ever, is the cost function (7) evaluated at the solution (23)

of (10) significantly smaller than when evaluated at (24)? We

explore this question with an illustrative two-item system.
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We consider a single period, two-item system that is undis-

counted. It is straightforward to verify that the objective

function (10) is

2

C(x) = hi[x i - ili (x . (25)
Si=l11

We denote the optimal base-stock policy for the XIS and GS

models by x = (x 1,...,x N) and x= (x .... ,xG), respectively.

Then (24) and (23) imply, respectively, that for i = 1,...,N,

I
x i  -- - l o g ( l - ) (

I[ , (26)
SG = log(-.c ))

xi Pi log 1

where the vi  are found by algorithm (23).

Let D be the percent decrease in minimum system cost when the

GS constraint, rather than the IIS constraint, is used. Then,

D = D(l, 2,hl,h2, )

=10Cx 
- Cx G

r ( G1
10o[l C(x1)J

and (25) and (26) imply that
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2

D = -[a + log(l-a)) h ii ](7D = 100 1- 2(27)
2- via + log(l-via))hit i

In order to investigate the sensitivity of D to the param-

eters i,hi and a, we show that for fixed a, 0 is a function

only of 21l and h2/h,. We then graph D evaluated at pairs

(12/ lh2 /h,), and see for what pairs D is large.

Theorem 3: For fixed a, D as given in (27) is a function

only of -021Pl and h2/hl.

Proof: The proof is in the Appendix.

In Figures I and 2 we have plotted the level curves of D for

= .8 and a = .9, respectively. We used the IMSL routine

ZBRENT to compute Step (1) of algorithm (23).

We consider 0 = 5% to be a significant decrease in optimal

cost. In Figures I and 2 we have plotted the level curves corres-

ponding to D = 5. We call the two regions in each figure for

which D 5 critical regions. Whenever a pair (I2 /1l,h2/hl)

falls within a critical region, a significant decrease in optimal

cost results from using the GS rather than the IIS constraint. The

symmetry observable in the graphs follows from the easily verifiable

fact that

hh,)
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FIGURE I

Critical Regions of Decreased Cost

[oL = .8, D = uh)

h h2
h1

7 26.2 29.2 31.7 25.9 13.5 9.0 6.8

1 -- 0.0 0.0 0.0 0.0 0.0 0.0 0.0

3 3.2 42 61 10.5 10.6 8.9 7.45r

1 5.4 7.2 10.7 19.7 22.5 20.0 17.5

1
7 6.8 9.0 13.5 25.9 31.7 29.2 26.2

____ ____ ____ ___ ____ ____ ___112

7 .1 3 5 7
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FIGURE 2

Critical Regions of Decreased Cost

[a = .9, D = D(ph)]

h2

D = 5%

21.3 23.2 24.5 18.6 9.3 6.2 4.6

1 0.0 0.0 0.0 0.0 0.0 0.0 0.0

II Do 5 ,

4 2.2 3.0 4. 7.6 8.0 6.8 5.8

1 3.7 5.0 7.4 14.2 17.3 15.8 14.0

1 4/. 6.2 9.3 18.6 24.5 23.2 21.3

'J2

1 1 
1

I 31 3 5
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Note that the largest values of D are found in the regions

where h2/h1  and Pl/2 are large, and where hl/h 2 and 2/1l

are large. A system for which this is typical is one in whicti some

items have a very low expected demand and a very high holding cost,

or vice versa [high holding cost z high unit purchase cost

(% expensive items)]. Many inventory systems of practical interest

contain such items. For such systems one can decrease the total

system cost substantially by using the base-stock policy given by

(23) rather than (24). Finally, we note that the critical region

is larger when a = .8 than when a = .9.

5. CONCLUSIONS AND EXTENSIONS

We have formulated a constrainted NLP to solve a base-stock

model with a service-level constraint rather than shortage costs.

This model has the advantage that a manager can more easily speci-

fy service objectives than shortage costs. We derived first-order

necessary and second-order sufficient conditions for an optimal

base-stock policy. For the special case of zero lead-time and

exponentially distributed demands, we derived a computationally

efficient algorithm to find an optimal base-stock policy. We

showed that for some inventory systems there is a substantial cost

savings when using this algorithm instead of the independent and

identical service approach that is often used in practice.

5.1 Uniformly Distributed Demands

One can do analysis similar to that in Section 4 for the

special case when Li = 0 and demands are distributed uniformly.
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Given that the demand distribution for item i is uniform on

a. + bi 2 (b1 - al) 2

(ai,bi so = 2 +-b and the variance is a i =
i), soUi 2 i 12 '

we have the following algorithm, analogous to (23), to determine

our optimal base-stock policy x.

(1) Solve "= k 1 =0 for X* > O.

*ki  (28)

(2) Set v i  hi i for i = l ,...,N.

(3) Set xi  = ai  + - ivia, for i = 1,...,N.

Analysis similar to that done for exponential demands could

be done here. We note that although the uniform density is a two-

parameter density, only the variance parameter is used to deter-

mine the vi in algorithm (28). The reason for this is that the

mean parameter is a "shift parameter," that is, its only effect on

the density or cdf is to move it right or left. It is easily seen

from (13) that a shift parameter never affects the value of vi

for any distribution. Of course, the value of xi is shifted as

necessary.

5.2 Possible Directions of Research

There are obvious difficulties involved in solving the equations

for the first-order necessary condition (13) if the cdf 0i cannot

be written in closed form. A direction of research is-to examine

numerical methods for solving (13) for, say, the normal or gamma
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distributions. A basic difficulty is involved in approximating the

cdf so that the equations (13) can be solved, and so that the solu-

tion obtained is a good approximation of the true policy x.;

According to Veinott [2, pp. 754-757), the generalized base-

stock model with shortage costs still has, for some nonstationary

parameters, a myopic base-stock policy that is optimal. A simple

model of this sort is one in which all costs are stationary, but

the demand distribution means vary in time. In order to guarantee

that a myopic base-stock policy is optimal, it is necessary that,

for each item in the system, the means are nondecreasing in time.

This, however, is not strong enough to guarantee that a myopic base-

stock policy be optimal when GS service constraints, rather than

shortage costs, are used. Thus, another direction of research is

to investigate optimal policies for this model. Since they will

not be myopic, this seems a very difficult problem.

A more promising direction is to introduce a set-up cost in

the model. The infinite horizon case using the stationary demand

distributions can be investigated. This model seems similar to the

infinite horizon case for (10), and so results similar to those in

this paper may be forthcoming. In particular, results for the

exponential demand distributions may be readily derived.
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APPENDIX

Theorem 3: For fixed t, D as given in (27) is a function

only of - and
UI Ell

Proof: We note that for a,b,a,b > O if and only if
b

there is some y > 0 such that a = ya and b = yb. Hence, we

must show that if jI =Yl' U= y 2 h = 6h', and ;= Ch

then D(iliU2 ,'1,12) = D(,1 ,12,hl,h 2). Let D = D(l,12,hl,h 2)

and D = D(l ,W2,h1,h2 ). Also let vi and Qi be given by (23)

for the parameters Vi,hi and i,hi, respectively. Then (27)

implies

2F [a~ + 1og90-a)] x ~~
D=0 - i l i

D 101
E [via + log(l-via)]hiu

i

and

2

+log(l-a)) L 6h Oyi

sii i [ + l og(l-vi )]6h ild

since ui = Yiand hi 6hi Simplifying yields
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2

[u + log90-031: h~1ip

i Ol + 1og(l-ovi) )h i

Evidently it is sufficient to show that v i v. for i 1,2.

Since a = 1, (23) implies that

X*k.
vi c(X.k + ih

where X* > 0 is the unique solution to

k i -T j I)- 1 0. (29)

Similarly,

i*k,
Gi  (.ki+ 6awih.)

where X* > 0 is the unique solution to

2 r
E~ ki -- -1 0.

1= io,(kki + 6ypih i )

We can write this equation as
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2 k{,(.)Tiu)-i

and so since X* is the unique solution to (29), we have

67

Thus,

,X*6yk i
+ nyeidie vi

~~as needed. -

LI
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